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Abstract. The proliferation of generative models has revolutionized
various aspects of daily life, bringing both opportunities and challenges.
This paper tackles a critical problem in the field of religious studies:
the automatic detection of partially manipulated religious images. We
address the discrepancy between human and algorithmic capabilities in
identifying fake images, particularly those visually obvious to humans but
challenging for current algorithms. Our study introduces a new testing
dataset for religious imagery and incorporates human-derived saliency
maps to guide deep learning models toward perceptually relevant re-
gions for fake detection. Experiments demonstrate that integrating vi-
sual attention information into the training process significantly improves
model performance, even with limited eye-tracking data. This human-in-
the-loop approach represents a significant advancement in deepfake de-
tection, particularly for preserving the integrity of religious and cultural
content. This work contributes to the development of more robust and
human-aligned deepfake detection systems, addressing critical challenges
in the era of widespread generative AI technologies.

Keywords: Gaze-assisted AI · Human Attention · Deepfake Detection
· Religious Studies

1 Introduction

In recent years, the diffusion of generative models has significantly transformed
various aspects of everyday activities. Generative models, particularly those
based on deep learning architectures, have shown remarkable capabilities in gen-
erating realistic data, including images [30, 48, 50], text [12], and audio [35].
These models have enabled a wide range of applications from creative arts to
personalized content creation, and have enhanced productivity in fields such as
design, entertainment, and education.

The democratization of generative models has enabled individuals and small
organizations to leverage sophisticated AI tools previously accessible only to
large corporations and research institutions. Platforms and applications powered
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by generative models allow users to create high-quality digital art, write coherent
articles, compose music, and even develop virtual environments with minimal
technical expertise. This accessibility fosters innovation and creativity, driving
forward the capabilities of AI in augmenting human activities and contributing
to economic growth. However, the widespread adoption of generative models
also brings significant challenges, particularly in the domain of misinformation
and deepfake generation. The capacity of generative models to synthesize highly
convincing yet entirely fabricated images, videos, and audio clips has raised
concerns about their potential misuse in influencing public opinion, political
campaigns, and social media narratives.

In the context of religious studies, these challenges are particularly relevant.
Religious images have been and still are of great significance to billions of people
worldwide. The history of faith communities that do not apply aniconic prohibi-
tions shows that religious imagery and iconography have played a fundamental
role in the dissemination and transmission of faith, devotion, and knowledge
about sacred texts, but also had polemic and propaganda purposes in intra-
and inter-religious dynamics. In medieval and modern times, images have been
modified mainly with the aim of reproducing sacred images to adapt them to
different geographical and cultural contexts or to ameliorate the subjects. In the
cases when images have been used in overtly propagandist ways – supporting
one identity, culture, religious, or political party over another – manipulation of
the elements obviously opted for pejorative or ridiculing elements.

More recently, the adoption of images in a digital format and the spread of
AI changed the way images are manipulated and their effects: deepfakes make
it much more difficult to distinguish real images from those created by AI, and
they are spread at unprecedented speed, with chances to “go viral” on a global
scale in short time. Such a change has also affected Christian imagery: numer-
ous devotional images produced by AI algorithms, have caused controversy as
they depict physical defects. These examples have alarmed believers and various
Christian Churches around the world because the images, while apparently suit-
able for private devotion, exhibit subtle traits of blasphemy. Moving from such
specific cases, it has been demonstrated that deepfakes, created ad hoc, generate
conflicts with high social costs and have an impact at social, religious, and polit-
ical levels that cannot be ignored. This is particularly relevant when deepfakes
are improperly used for targeting specific groups or individuals based on their
race, gender, or religion [5]. This form of discrimination conveys prejudices that
heighten existing social tensions and further reinforce harmful stereotypes.

To counterbalance these trends and work on accurate historical and cul-
tural knowledge, interdisciplinary teams of scholars can develop control systems
based on robust methods for automatic fake recognition. However, the discrep-
ancy between human and algorithmic deepfake detection capabilities presents an
intriguing challenge in this field. As reveled in [36], state-of-the-art algorithms
often struggle to detect deepfake videos that human observers find obviously
fake. This counterintuitive finding suggests that current models may not be cap-
turing the same visual cues that humans instinctively recognize as indicators of
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(a) Original Images (b) Segmentation Masks (c) Manipulated Images

Fig. 1: Qualitative examples of our proposed dataset comprising original religious im-
ages and corresponding manipulated versions using segmentation masks to preserve
religious figures. From top to bottom and from left to right: Marian apparition of
Banneux (Belgium), Marian apparition of Fatima (Portugal), Marian apparition of
Guadalupe (Mexico), Marian apparition of Lourdes (France).

manipulation. Several factors could contribute to this phenomenon: (i) humans
may rely on subtle contextual or semantic cues that AI models are not attuned
to; (ii) algorithms might overfit to specific artifacts rather than learning general-
izable features; and (iii) there could be a mismatch between fake images used to
train algorithms and those shown to human participants. Moreover, human per-
ception can be influenced by expectations, context, and cognitive biases, while
algorithms apply their detection criteria more consistently [41]. This discrep-
ancy reveals gaps in our understanding of both human and machine perception
of deepfakes, highlighting the need for further research to bridge this divide.

Building on previous studies that have demonstrated how visual attention is
subtly influenced by the authenticity or manipulation of observed images [14],
this paper presents the first attempt to exploit the potential of human visual
attention for the automatic detection of partially manipulated images, with a
specific focus on the field of religious studies. By analyzing where humans focus
their attention when identifying deepfakes, we create human-derived saliency
maps that highlight the most perceptually relevant regions for deepfake detec-
tion. In this context, saliency maps can highlight areas that might have been
manipulated, as these regions often exhibit subtle inconsistencies that draw at-
tention. By incorporating this visual attention information into visual backbones,
we aim to guide the feature extraction process toward areas that are more likely
to show signs of manipulation. This human-in-the-loop approach is shown to en-
hance the performance of deepfake detection systems, especially on images that
are visually obvious to human observers but challenging for current algorithms.
Contributions. To sum up, the main contributions of this paper are as follows:
– We exploit human attention and visual saliency for the task of deepfake

detection on partially manipulated images.
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– We introduce a new testing dataset specifically designed to address the dis-
tinctive challenges posed by religious images and, more broadly, partially
modified ones (Fig. 1).

– Our experiments show how the integration of visual attention into the train-
ing process of a model for the deepfake detection task contributes positively
to its performance. Moreover, we show that even in the presence of a small
amount of data recorded by eye-trackers, they are of value and beneficial
compared to the exclusive use of generated data from saliency models.

2 Related Work

Gaze-assisted AI. Human visual attention provides valuable insights into the
perceptual processes that guide human decision-making [8, 17, 33, 47]. Under-
standing its mechanisms holds significant potential for advancing the develop-
ment of efficient and generalizable AI systems. Human attention guidance, ob-
tained from eye-tracking data or computational models [3, 7, 19, 40], has proven
beneficial in solving several intriguing challenges [13], and the integration into AI
models can enhance their performance by guiding the focus of the model to the
most informative parts of the data. This has implications across various domains,
ranging from visual recognition [57], natural language processing [52], and vision-
and-language understanding [32] to sound source localization [45] and deepfake
detection [11]. Some examples include the works presented in [1,42] that adopted
a saliency-guided image enhancement approach to reduce distractors while shift-
ing the attention towards the most interesting objects in the scene. On another
line, some works [26,37] proposed new solutions for advancing automatic graphic
design. Others [15,18,53,54], instead, harnessed the potential of human attention
for visual question answering, image captioning, and reasoning.

However, human attention is not only used as a tool for specific applications
but also in enhancing the generalizability of deep learning models. Boyd et al. [10]
annotated a small amount of training data with human saliency, where salient
regions indicate the most discriminative parts to make a decision. They demon-
strated that this type of human-aided training improves the performance of deep
learning models, especially in a setting with limited training data. Unfortunately,
human saliency annotation is quite expensive. As a consequence, Crum et al. [22]
addressed this problem by devising a teacher-student framework involving three
main steps. First, a small amount of available human-annotated data is adopted
to train a teacher model. Then, the teacher model generates saliency maps for
a large amount of new training data. Finally, a student model is trained on the
samples annotated by the teacher. It is proved that the student model surpasses
the performance of models trained only with limited human saliency.

The principle of incorporating human supervision can also be particularly
beneficial in tasks where subtle visual cues are crucial, such as in the detection
of deepfakes. Following this direction, recent studies have started the integration
of human visual attention into deepfake detection models. Korshunov et al. [36]
highlighted the discrepancies between human and algorithmic detection capa-
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bilities, suggesting that models could benefit from mimicking human perceptual
strategies. Cartella et al. [14] conducted an eye-tracking experiment demonstrat-
ing that humans are particularly susceptible to the alteration of images. Their
findings suggest a difference in the human observational pattern when looking
at real or fake images. Building on these recent works, in this paper, we focus
on the detection of deepfakes within a religious context. The application of hu-
man attention and saliency models in detecting partially manipulated religious
images is still underexplored. In fact, religious images hold significant cultural
and emotional value, making the detection of alterations critical to preserving
the integrity of the cultural heritage.
Deepfake Detection. The field of deepfake detection has seen significant ad-
vancements in recent years, primarily driven by the continuous evolution of im-
age generation techniques. Early efforts in this area focused on detecting GAN-
generated faces [49,55,59]. As image generation methods evolved to include dif-
fusion models [44, 48], detection techniques expanded accordingly. Researchers
expanded their focus to include natural images beyond the facial domain [2,4,25].
This adaptation marked a significant shift, demonstrating the need for versatile
detection methods capable of handling various generation techniques.

In this context, a distinct line of research has utilized frequency domain analy-
sis, capitalizing on the unique spectral characteristics that differentiate real from
generated images [20,27]. Another approach [58] focused instead on the discrep-
ancies between input images and their reconstructions produced by pre-trained
diffusion models. To increase the robustness of deepfake detection methods to
unseen generators, recent strategies have tackled the deepfake detection problem
by leveraging CLIP [46] to extract visual features for the task [2, 16, 21, 43, 51].
These approaches emphasize the visual patterns identified by the CLIP backbone
rather than its semantic text-image alignment properties.

As previously mentioned, only a few attempts have been made to include
human visual attention in the deepfake detection task. Among them, Boyd et
al. [11] proposed a training strategy to address the task by incorporating hu-
man visual annotations into a loss function. The acquisition of the training set
required subjects to manually annotate regions in the presented images, while
providing an answer on which image is either the synthetic or real one, in a
two-alternative forced choice manner. Following the major trend in standard
deepfake detection literature [6,38,49,60], this work [11] focused on the recogni-
tion of face manipulation. Differently from previous research, we tackle deepfake
detection by relying on training data directly collected from an eye-tracking
experiment [14] and present a novel solution to detect partially manipulated
religious images, a domain never addressed before in existing literature.

3 Proposed Approach

The main goal of our study is to assess, from an objective standpoint, the po-
tential benefits of incorporating visual attention information into the design of
models for the automatic identification of manipulated images.
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(a) Saliency Map
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(b) Class Activation Map
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(c) Mean Squared Error

Fig. 2: Visualization of mean squared error between saliency map (Si) and Class Ac-
tivation Map (Ci) for a manipulated image xi.

Starting with the basic formulation, let X = {x1, . . . , xN} be a set of N
input images and Y = {y1, . . . , yN} their corresponding labels, where yi ∈ {0, 1}
indicates whether the i-th image is genuine (0) or manipulated (1). The model
employs a visual backbone to extract features, denoted by function fθ(·), where
θ represents the learnable parameters. The feature vector extracted from the
backbone for image xi is given by zi = fθ(xi). A classifier gϕ(·) with parameters
ϕ is then applied to these features, producing a probability distribution over the
two classes: pi = gϕ(zi). The model is therefore trained to minimize the binary
cross-entropy loss:

LBCE = − 1

N

N∑
i=1

[yi log pi + (1− yi) log(1− pi)], (1)

where pi represents the predicted probability of the i-th image being manipu-
lated. The parameters θ of the visual backbone and ϕ of the classification head
are optimized jointly using stochastic gradient descent to minimize the binary
cross-entropy loss over the training dataset.

Inspired by [11], we incorporate human generalization capabilities with in-
sights from visual attention models within the aforementioned framework. In
particular, given an image xi we aim to focus on specific regions that are likely
to be informative for the classification task. This information can be represented
as an empirical fixation density Shi , obtained by convolving the fixation locations
of all the observers on xi by an isotropic bidimensional Gaussian function, or
via an ideal saliency model, defined as Smi = M(xi), where M(·) is a function
that maps an input image to a saliency map based on low-level visual features
and higher-order statistics.

To leverage this information, we compute Class Activation Maps (CAMs) [61]
for each image, denoted as Ci = hψ(zi), where hψ(·) is the CAM generation func-
tion with parameters ψ. The model is therefore trained to minimize a combined
loss function:

L = λLBCE + (1− λ)LSal, (2)
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where LSal is the saliency loss that measures the discrepancy between the
saliency map and the CAM. Formally, this is defined as follows:

LSal =
1

N

N∑
i=1

D(Si, Ci), (3)

where D(·, ·) is a distance function (e.g. mean squared error or KL divergence)
between Si ∈ {Shi , Smi } and the CAM Ci related to the image xi, while λ ∈ [0, 1]
is an hyperparameter that balances the two loss components.

To provide a graphical representation of the distance function, we report
in Fig. 2 the mean squared error obtained from a generic manipulated image
xi. Here Si refers to the saliency map while Ci is the 7 × 7 pixels feature map
obtained from one of the last layers of a CNN. Minimizing Eq. (2) encourages the
model to learn features that effectively distinguish between real and fake images
(through the classification loss LBCE) while focusing on image regions that are
likely to be informative for the classification task, guided by the saliency map
and the CAM similarity term.

4 Testing Dataset

4.1 Dataset Construction

To evaluate the effectiveness of the proposed approach, we introduce a novel
testing dataset specifically designed to address the distinctive challenges posed
by religious images and, more broadly, partially modified ones.

Our proposed dataset is composed of images representing the iconography
attested within Marian devotion and the phenomena of Marian apparitions over
the centuries, that could be used in the study of devotional phenomena and
the perception of religious images in the contemporary age. In particular, we
collect 50 images of Marian apparitions related to 12 different religious represen-
tations. Examples of the collected images are depicted in Fig. 1a. Our objective
is to define a manipulation process that exclusively focuses on the context of
the religious representation. Indeed, the partial modification of the original im-
age, coupled with the use of a conservative mask, precludes the introduction of
awkward elements or distortions on the sacred figure, thus making the detection
task particularly challenging also from a semantic standpoint.

In detail, given an image xi, we extract the segmentation mask si (see Fig. 1b)
pertaining to the individuals depicted in the scene through the SAM model [34].
In the editing phase, we employ the inpainting pipeline of the Stable Diffusion
XL model (SDXL [44])3 to generate manipulated images. This process takes as
input the original image xi, a segmentation mask representing the inpainting
regions (i.e. in our case the inverse of si since we want to preserve the religious
figures), and a textual prompt ti which guides the regeneration of the image
context while keeping the main subjects unchanged. Specifically, ti is randomly
3 https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1

https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1
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Fig. 3: Examples of the computed saliency maps before (top) and after (bottom) the
manipulation. H represents the entropy while S is the saliency map predicted by [3].

sampled from a template of possible prompts that we manually devise for the
scope. Examples of ti are: “Peaceful orchard with fruit-laden trees and buzzing
bees”, “Tranquil garden with blooming flowers and greenery”. Each of the 50
original images is linked to six distinct contextual modifications, resulting in a
total of 350 examples (Fig. 1c).

4.2 Dataset Analysis

Considering the manipulation pipeline previously described, we aim to under-
stand the variation in the focus of attention between a real image and its altered
counterpart. We demonstrate that the difference in the attentive pattern across
the images of our constructed dataset is of considerable importance. By uti-
lizing TempSAL [3], a state-of-the-art saliency predictor, we generate saliency
maps for both real and altered images, to simulate human visual attention. The
qualitative analysis presented in Fig. 3 provides evidence of a discernible atten-
tive pattern across the two image categories. Compared to the real samples, the
generation of the surrounding context through a diffusion-based model causes a
significant shift towards the inpainted regions.

To quantify this observed difference in attention distribution, we employ
entropy as a measure of dispersion for our saliency maps. Entropy, in this context,
provides an indication of how focused or dispersed the attention of the model
is across the image. A lower entropy value suggests that the attention of the
model is concentrated on specific regions, while a higher entropy indicates a
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Fig. 4: Comparison of saliency map entropy distributions between original and manip-
ulated images.

more uniform distribution of attention across the image. Given a saliency map
S of size m× n, we first normalize it to form a probability distribution:

P (i, j) =
S(i, j)∑m

x=1

∑n
y=1 S(x, y)

, (4)

where P (i, j) represents the normalized saliency value at position (i, j). The
entropy H of the saliency map is then calculated as:

H = −
m∑
i=1

n∑
j=1

P (i, j) log2 P (i, j). (5)

This formulation yields entropy values in bits. A saliency map with perfectly
uniform attention would have a maximum entropy of log2(mn), while a map
with all attention focused on a single pixel would have a minimum entropy of 0.
As a consequence of the attention shift towards inpainted regions in synthetic
images, the entropy of the corresponding saliency maps presents higher values,
as indicated in Fig. 4 where the empirical distributions of the saliency entropy
values are compared to the real case. This higher entropy in synthetic images
suggests a more dispersed attention pattern, likely due to the model detecting
inconsistencies or artifacts introduced by the inpainting process across a wider
area of the image. In contrast, the lower entropy observed in real images indi-
cates more focused attention, possibly on natural salient features of the original,
unaltered image, as the faces of the people featured. This quantitative entropy
analysis corroborates our qualitative observations, providing a numerical basis
for the difference in attention patterns between real and synthetic images. It
underscores the potential of entropy as a discriminative feature in distinguish-
ing between original and manipulated images, offering insights into the spatial
characteristics of model attention.

5 Experiments

5.1 Experimental Setting

Datasets. As previously described, the training procedure entails the calcula-
tion of a saliency loss, which employs images and associated saliency maps rep-
resentative of the region of attention. Consequently, a dataset comprising both
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types of data, collected in the context of partially modified images is essential for
effective learning. The Unveiling the Truth (UTruth) dataset presented in [14]
represents the only collection of both real and manipulated images paired with
visual attention data obtained through eye-tracking. The dataset consists of 400
images: 100 authentic and 300 partially modified using diffusion models. The
modifications were carefully executed to preserve the realism, semantics, and
context of the original images. During an eye-tracking experiment, each image
was viewed by five distinct subjects, resulting in a saliency map that combines
all the recorded fixations for every image in the dataset. To achieve a balanced
ratio between real and manipulated images, we supplement this initial set with
200 authentic images and their corresponding saliency maps from CAT2000 [9],
a widely-used saliency dataset that features images from different categories.

However, the limited number of available images resulting from the onerous
process of data acquisition using an eye-tracker led us to integrate into the train-
ing dataset 2, 000 images collected in D3 [4], a comprehensive dataset designed for
large-scale deepfake detection. D3 includes 9.2 million generated images created
using four state-of-the-art diffusion model generators and their original coun-
terpart. In particular, we randomly selected 1, 000 original samples and 1, 000
corresponding generated versions among all the images with at least 400 pixels
on each side. Given that images from D3 do not include human fixations, we
equip them with computational saliency maps obtained from TempSAL [3], a
recent saliency prediction model which can well simulate human attention.

Architecture and Training Details. Our approach utilizes a ResNet-50 archi-
tecture [29] as the visual backbone, pre-trained on ImageNet-1k [23]. We modify
the final fully connected layer to output two classes, corresponding to “real” and
“manipulated” images. The model is trained using stochastic gradient descent
with a momentum of 0.9 and weight decay of 1× 10−6. We employ a step learn-
ing rate scheduler, initially setting the learning rate to 0.005 and reducing it by a
factor of 0.1 every 12 epochs. The training process spans 50 epochs with a batch
size of 32. As described in Eq. (2), our loss function is a weighted combination
of two components: binary cross-entropy loss for classification LBCE and mean
squared error as saliency loss LSal prediction. The best combination of the two
loss components is obtained with λ = 0.9.

To visualize the focus of the model, we implement Class Activation Mapping
(CAM) [61] by extracting features from the final convolutional layer of ResNet-
50. The CAM is computed by weighting these features with the corresponding
class weights from the final fully connected layer. This allows us to generate
heatmaps highlighting the regions most influential in the model decision-making
process. All input images are resized to 224× 224.

Evaluation Metrics. Our evaluation methodology is tailored to address the
significant imbalance in our testing dataset, which comprises 50 original images
and 400 fake images. This 1:8 ratio necessitates a careful selection of evaluation
metrics that are robust to class imbalance.

We prioritize Average Precision (AP) as our primary metric. AP provides a
single-value summary of the precision-recall curve, offering a concise yet compre-
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Table 1: Accuracy results on our testing dataset comparing our solution with state-
of-the-art deepfake detection methods. Precision and recall are not in bold as they are
not individually significant in the case of an unbalanced dataset. Ours w/o LSal means
our approach with λ = 1, while Ours w/ LSal means our approach with λ = 0.9 which
represents our best configuration.

AP AUC-PR Precision Recall AUC-ROC

Grag2021 [28] 87.81 87.69 100.00 0.25 51.68
Wang2020 [56] (Blur+JPEG 0.5) 90.44 90.38 100.00 0.25 56.78
Wang2020 [56] (Blur+JPEG 0.1) 92.28 92.25 100.00 0.50 61.66
DIRE [58] (LSUN/ADM) 85.83 85.65 75.00 3.00 43.14
DIRE [58] (LSUN/PNDM) 87.79 87.94 89.04 95.50 47.15

Ours w/o LSal 92.97 92.95 92.79 48.25 62.13
Ours w/ LSal 95.35 95.34 94.76 63.25 72.93

hensive measure of model performance. It is particularly informative in our im-
balanced scenario, as it emphasizes the model ability to detect the minority class
(i.e. original images) without being influenced by the majority class (i.e. ma-
nipulated images). Complementing AP, we utilize the Area Under the Precision-
Recall Curve (AUC-PR) that offers a more detailed view of the precision-recall
trade-off across different thresholds. Given the prevalence of manipulated images
in our dataset, Precision becomes a critical metric. It quantifies the proportion
of correct fake detections among all images classified as fake, thereby measuring
our model ability to avoid false alarms. This is particularly important given the
potential real-world implications of misclassifying original images as fake. Com-
plementing Precision, we also consider Recall (or sensitivity). Recall indicates
the proportion of actual fake images successfully identified by our model. With
the large number of fake images in our dataset, a high recall ensures that we
detect a significant portion of the manipulated content.

Lastly, we include the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) for completeness. While AUC-ROC is a popular metric that
measures the model discriminative ability across various classification thresholds,
we interpret it cautiously in our context. AUC-ROC can potentially overestimate
performance on imbalanced datasets like ours, as it is less sensitive to class
imbalance compared to precision-recall based metrics.

5.2 Comparison with Standard Deepfake Detection Methods

We assess the performance of our model in detecting real and fake images on
our proposed testing dataset. In particular, we compare our model against
state-of-the-art approaches, namely the model proposed by Gragnaniello et
al. (Grag2021) [28], the one introduced by Wang et al. (Wang2020) [56], and
the DIRE architecture [58]. The results for deepfake detection are reported in
Table 1 and plotted in Fig. 5. Significantly, our fake detection approach sur-
passes state-of-the-art detectors across all key metrics, including AP, AUC-PR,
and AUC-ROC. Although the considered approaches achieve higher absolute
precision or recall values, it is important to note that in the context of an imbal-
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Fig. 5: Performance comparison of image manipulation detection methods on our test-
ing dataset. We report the Precision-Recall curve (left) and ROC curve (right). The
dashed line indicates the performance of a random classifier.

anced dataset, precision and recall individually may not provide a comprehensive
evaluation. In addition to these results, in Table 1 we also report a comparison
of our model with and without the saliency loss (cf. Eq. (2)). It is clear that aug-
menting training with saliency maps representing the human focus of attention
leads to better performance. Saliency maps represent a guide for the detector
that during training learns to adjust its internal attention representation to-
wards regions that are the most discriminative for the real-fake classification,
thus mimicking the human behavior.

5.3 Ablation Studies

Analyzing the Impact of the Training set. In the previous section, we
demonstrated the efficacy of our method in detecting manipulated images de-
picting religious representations. The integration of saliency within the fake de-
tection pipeline proved to be fundamental. In this section, we conduct an ab-
lation study to shed light on the contributions of human attention in contrast
to the attention maps generated by a predictive model. In Table 2, we compare
different training strategies considering three combinations of training sets. The
first row refers to a setting where we employ 300 real and 300 fake images from
the UTruth dataset presented in [14] and CAT2000 et al. [9], along with their
corresponding human saliency maps. In the second case, we train our model on
1, 000 real and 1, 000 fake images derived from D3 [4]. Although training on D3

achieves superior performance, the approach based entirely on human attention
remains competitive. We attribute this performance gap to the different sizes of
the two training sets. Indeed, focusing on the latter training setting in the table,
where the dataset includes a combination of real and generated saliency maps,
the performance gain is maximized. Such results prove that the integration of
human attention is beneficial for the detection of partially manipulated images.
Assessing the Generalizability across Different Backbones. We conduct
extensive experiments across various visual backbones to evaluate the robust-
ness of the proposed method. In detail, we report in Table 3 the results for four
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Table 2: Performance comparison of different training set strategies.

Human Saliency Computed Saliency

UTruth [14] CAT2000 [9] D3 [4] AP AUC-PR Precision Recall AUC-ROC

✓ ✓ - 89.97 89.93 89.72 96.00 56.06
- - ✓ 93.57 93.55 94.40 29.50 64.31
✓ ✓ ✓ 95.35 95.34 94.76 63.25 72.93

Table 3: Performance comparison of various visual backbone architectures.

LSal AP AUC-PR Precision Recall AUC-ROC

ResNet-18 ✗ 91.29 91.26 92.00 34.50 57.67
✓ 91.75 91.72 90.32 56.00 58.00

ResNet-50 ✗ 92.97 92.95 92.79 48.25 62.13
✓ 95.35 95.34 94.76 63.25 72.93

DenseNet-201 ✗ 92.35 92.33 91.60 57.25 61.96
✓ 95.17 95.16 98.00 24.50 71.73

Swin-Tiny ✗ 90.54 90.50 89.81 35.25 54.86
✓ 92.40 92.38 94.26 28.75 57.94

backbones, each trained with (λ = 0.9) and without (λ = 1) the incorpora-
tion of saliency maps. In addition to reporting the performance of ResNet-50,
we consider ResNet-18 [29], DenseNet-201 [31], and a Vision Transformer-based
backbone [24] like Swin-Tiny [39]. As it can be seen, comparing the results of
the considered backbones, ResNet-50 leads to the best results according to all
evaluation metrics. Most importantly, the adoption of the saliency loss leads to
better detection performance across all the key metrics, regardless of the back-
bone employed thus further demonstrating the effectiveness of human attention
for the deepfake detection task.

Analyzing the Impact of the λ Parameter. Fig. 6 illustrates the impact of
varying the lambda parameter from Eq. (2) on the accuracy of detecting real and
manipulated images, as well as the balanced accuracy between the two. Here,
we consider the best configuration of our approach obtained with a ResNet-50
backbone. As lambda increases from 0.01 to 1.0 (representing less weight given to
the saliency loss), we observe that the accuracy for real images steadily increases,
reaching a peak around λ = 0.9. The accuracy for manipulated images sharply
decreases, especially for λ values above 0.7. The balanced accuracy shows a
gradual improvement up to λ = 0.9, after which it declines with λ = 1.0 which
corresponds to a training without the saliency loss.

Notably, the performance in detecting manipulated images drops significantly
as lambda increases, indicating that reducing the influence of the saliency loss
negatively impacts the model ability to identify manipulated content. This un-
derscores the importance of combining both class loss and saliency loss for op-
timal performance. The balanced accuracy peaks at λ = 0.9, suggesting this
is the optimal value for balancing the detection of both real and manipulated
images. Beyond this point, corresponding to a global loss entirely based on the
classification loss, the overall performance degrades.
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Fig. 6: Impact of lambda parameter on image classification accuracy. The optimal
balance between real and manipulated image detection is achieved at λ = 0.9, demon-
strating the benefit of combining classification and saliency losses.

6 Conclusion

This study demonstrates the efficacy of integrating human visual attention
into the automatic detection of manipulated religious images. Our experiments
strongly support the hypothesis that human-derived saliency maps can signifi-
cantly enhance the performance of deepfake detection models, particularly for
images that are visually obvious to human observers but challenging for current
algorithms. The introduction of our novel testing dataset, specifically designed
for religious visual data, has provided valuable insights into the unique chal-
lenges posed by partially modified images in this domain. Notably, our results
show that even a small amount of eye-tracking data can yield substantial im-
provements compared to relying solely on generated data from saliency models.
This finding underscores the value of human-in-the-loop approaches in AI devel-
opment and suggests that expanding this dataset would be highly beneficial for
further advancements in the field. Future work should prioritize the collection of
more extensive eye-tracking data across diverse scenarios and cultural contexts
to enhance the robustness and generalizability of these models. As generative
AI technologies continue to evolve, the approach presented in this paper offers
a promising direction for future research, suggesting that further exploration of
human-AI collaboration could lead to more robust, context-aware, and ethically
aligned deepfake detection systems.
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