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2. ldea: Modelling Gaze Dynamics as Neural TPPs

— GRU / Transformer We model the conditional dependence of the distribution
‘ po(Tni1 | hy,,z;) on both past events and stimulus

MM, SM, and SS average values may deliver inconsistent results: models exhibiting
less variability w.r.t. humans, can score better than the ground truth model.

Neural TPPs model the next arrival time of an event by conditioning on past events. ) ) )

H, = {t, €T : t, <t} denotes the history of arrival times of all events up to time . (Tn-2,TF,,) -+ (Tn,TF,) hn P(Tni1|He, 1) by concatenating the history embedding and semantic

> V vectors into a context vector ¢;, = |h, || ). Our proposal: Considering a good model as the one that minimises the discrepancy

TPP is a random process whose realisations consist of a sequence of discrete
events localised in time, {rx ,t,}, with ¢, € R and the mark rr € R?.

Fixation Duration Generation: The context vector c;, is employed to learn the parameters of a Log-Gaussian Mixture Model. - o
Fixation Position Generation: The conditional probability of the next mark (fixation position), ps(rr,,, | h,,z;) is defined as a 2D Gaussian Mixture Model. 7. Statistics of the Generated Scanpaths

The modelling assumptions of Neural TPPs align with the structure of scanpath data.
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The loss function is a negative log-likelihood defined as: L(0) = —> ;> >, {logpg(ﬁi | ¢;n) + log pj (1l | cj,n)]

O Q Q Q . ) Scanpath Vo5 — scmpainvon Statistical  proper-

' T1 P T2 P T3 P T4 P T5 N IOR-ROI-LSTM —— |OR-ROI-LSTM ties of simulated

: : - - . " > —— DeepGazelll

0 y y ; ; L t:me 4. Qualitative Examples 5. Extension to Visual Search G /’ scanpaths closely
: ” ’ ! N e resemble those from

TPP-Gaze predicts scanpaths better aligned with those from human subjects. Target: Sink Target: Chair
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Modelling scanpaths entails defining a mapping from visual stimulus, I to a sequence
of time-stamped gaze locations, S = {(rr,,t1), (rry,t2), ..., (rEy,tn)}, Where rp &€
R? denotes the two-dimensional spatial coordinates of the n-th fixation on the stimulus
I, while t,, € R™ represents the corresponding arrival time.
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Let Fiurgec be the embedding vector representing the search objective obtained | L Y

through the RoBERTa language model.
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