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1. Motivation

Scanpath Prediction is the task of predicting the spatial and temporal patterns of
human eye movements, including the sequence and timing of gaze shifts.

• While existing computational models effectively predict spatial aspects of ob-
server’s visual scanpaths (where to look), they often overlook the temporal
facet of attention dynamics (when).

• The few approaches able to predict fixation duration are fully engineered, and
do not address the problem in a mathematical principled way.

We propose a novel view on the problem of scanpath prediction by considering a
scanpath as the realisation of a Neural Temporal Point Process [1, 2].

2. Idea: Modelling Gaze Dynamics as Neural TPPs
Neural TPPs model the next arrival time of an event by conditioning on past events.
Ht = {tn ∈ T : tn < t} denotes the history of arrival times of all events up to time t.

• Time distribution might depend on factors other than the history. A marked
TPP is a random process whose realisations consist of a sequence of discrete
events localised in time, {rFn , tn}, with tn ∈ R+ and the mark rFn ∈ R2.

The modelling assumptions of Neural TPPs align with the structure of scanpath data.

Modelling scanpaths entails defining a mapping from visual stimulus, I to a sequence
of time-stamped gaze locations, S = {(rF1 , t1), (rF2 , t2), . . . , (rFN

, tN)}, where rFn ∈
R2 denotes the two-dimensional spatial coordinates of the n-th fixation on the stimulus
I, while tn ∈ R+ represents the corresponding arrival time.

Our Contributions

• We propose TPP-Gaze, a novel scanpath model based on Neural TPPs, that
jointly learns the temporal dynamics of fixations position and duration.

• We extend recent Neural TPP models to deal with visual data (i.e., images) and
connect scanpath modelling and prediction to point process theory.

3. Proposed Method: TPP-Gaze
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Representing Scene Semantics: The history of past
events also depends on the input visual stimulus I. We
extract a perceptual representation zj of I through a
DenseNet.

History of Past Events: The pair (rFn , τn) represents
the event at time tn with fixation position rFn and du-
ration τn = tn − tn−1. The Transformer/GRU state em-
bedding hn represents the influence of the history up to
the n−th fixation.

Si
n+1 ∼ pθ(rFn+1 , tn+1 | hn, zj).

We model the conditional dependence of the distribution
pθ(τn+1 | hn, zj) on both past events and stimulus
by concatenating the history embedding and semantic
vectors into a context vector cj,n = [hn || zj].

Fixation Duration Generation: The context vector cj,n is employed to learn the parameters of a Log-Gaussian Mixture Model.
Fixation Position Generation: The conditional probability of the next mark (fixation position), pθ(rFn+1 | hn, zj) is defined as a 2D Gaussian Mixture Model.

The loss function is a negative log-likelihood defined as: L(θ) = − ∑
j

∑
i

∑
n

[
log p∗

θ(τ i
n | cj,n) + log p∗

θ(ri
Fn

| cj,n)
]
.

6. Comparison with the State of the Art

TPP-Gaze (with either GRU or Transformer-based history encoding) outperforms all
the other approaches on most of the adopted metrics.

COCO-FreeView MIT1003 OSIE NUSEF
MM ↓ SM ↓ SS ↓ MM ↓ SM ↓ SS ↓ MM ↓ SM ↓ SS ↓ MM ↓ SM ↓ SS ↓

Itti-Koch [7] 0.51 - - 0.95 - - 1.66 - - 0.45 - -
CLE (Itti) [8] 0.54 - - 0.39 - - 0.28 - - 0.20 - -
CLE (DG) [8] 0.44 - - - - - 0.24 - - 0.15 - -
G-Eymol [6] 1.05 9.00 8.75 0.88 15.90 3.32 1.16 16.17 12.28 0.81 1.76. 1.99
IOR-ROI-LSTM [5] 0.38 1.54 0.56 0.31 0.69 5.08 0.69 0.75 0.20 0.36 0.11 0.06
DeepGazeIII [3] 0.03 - - - - - 0.11 - - 0.07 - -
Scanpath-VQA [4] 0.12 1.07 0.43 0.07 0.06 0.05 0.08 0.03 0.02 0.06 0.02 0.02
DeepGazeIII [3] 0.04 - - 0.08 - - 0.08 - - 0.08 - -
Scanpath-VQA [4] 0.23 0.08 0.03 0.12 0.23 0.14 0.23 0.40 0.29 0.09 0.06 0.06
TPP-Gaze (GRU.) 0.03 0.08 0.05 0.04 0.15 0.12 0.05 0.20 0.25 0.04 0.04 0.02
TPP-Gaze (Trans.) 0.03 0.10 0.06 0.04 0.22 0.14 0.06 0.25 0.29 0.04 0.04 0.02

MM, SM, and SS average values may deliver inconsistent results: models exhibiting
less variability w.r.t. humans, can score better than the ground truth model.

Our proposal: Considering a good model as the one that minimises the discrepancy
between the target and model-derived score distributions.

5. Extension to Visual Search
Target: Sink Target: Chair Target: Knife Target: Car

TP
P-

Ga
ze

Hu
m

an
s

Let Ftarget be the embedding vector representing the search objective obtained
through the RoBERTa language model.

The visual backbone for the visual search model is modified to output M = 256
feature maps. Let X = [x0, . . . , xM ] ∈ RM»d represent the matrix of flattened image
features. The task-specific semantic representation for the j-th image, zj,target, is:

zj,target =
M∑

i=1
wixi, w = softplus(MLP(Ftarget))

7. Statistics of the Generated Scanpaths
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Statistical proper-
ties of simulated
scanpaths closely
resemble those from
real observers.
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4. Qualitative Examples
TPP-Gaze predicts scanpaths better aligned with those from human subjects.

IOR-ROI-LSTM [5] DeepGazeIII [3] Scanpath-VQA [4] TPP-Gaze (Ours) Humans
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