

1. Motivation

Scanpath Prediction is the task of predicting the spatial and temporal patterns of human eye movements, including the sequence and timing of gaze shifts.

- While existing computational models effectively predict spatial aspects of observer's visual scanpaths (where to look), they often overlook the temporal facet of attention dynamics (when).
- The few approaches able to predict fixation duration are fully engineered, and do not address the problem in a mathematical principled way.

We propose a novel view on the problem of scanpath prediction by considering a scanpath as the realisation of a **Neural Temporal Point Process** [1, 2].

2. Idea: Modelling Gaze Dynamics as Neural TPPs

Neural TPPs model the next arrival time of an event by conditioning on past events. $\mathcal{H}_t = \{t_n \in \mathcal{T} : t_n < t\}$ denotes the history of arrival times of all events up to time t

■ Time distribution might depend on factors other than the history. A marked TPP is a random process whose realisations consist of a sequence of discrete events localised in time, $\{r_{F_n}, t_n\}$, with $t_n \in \mathbb{R}^+$ and the mark $r_{F_n} \in \mathbb{R}^2$.

The modelling assumptions of Neural TPPs align with the structure of scanpath data.

Modelling scanpaths entails defining a mapping from visual stimulus, I to a sequence of time-stamped gaze locations, $S=\{(r_{F_1},t_1),(r_{F_2},t_2),\ldots,(r_{F_N},t_N)\}$, where $r_{F_n}\in$ \mathbb{R}^2 denotes the two-dimensional spatial coordinates of the n-th fixation on the stimulus I, while $t_n \in \mathbb{R}^+$ represents the corresponding arrival time.

Our Contributions

- We propose TPP-Gaze, a novel scanpath model based on Neural TPPs, that jointly learns the temporal dynamics of fixations position and duration.
- We extend recent Neural TPP models to deal with visual data (i.e., images) and connect scanpath modelling and prediction to point process theory.

TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes

Alessandro D'Amelio 1 , Giuseppe Cartella 2 , Vittorio Cuculo 2 , Manuele Lucchi 1 , Marcella Cornia 2 , Rita Cucchiara², Giuseppe Boccignone¹

 1 University of Milan, Italy 2 University of Modena and Reggio Emilia, Italy

Representing Scene Semantics: The history of past events also depends on the input visual stimulus I. We extract a perceptual representation z_i of I through a DenseNet.

History of Past Events: The pair (r_{F_n}, τ_n) represents the event at time t_n with fixation position r_{F_n} and duration $\tau_n = t_n - t_{n-1}$. The Transformer/GRU state embedding h_n represents the influence of the history up to the n—th fixation.

$$S_{n+1}^i \sim p_{\theta}(\mathbf{r}_{F_{n+1}}, t_{n+1} \mid \mathbf{h}_n, \mathbf{z}_j).$$

We model the conditional dependence of the distribution $p_{\theta}(\tau_{n+1} \mid \mathbf{h}_n, \mathbf{z}_i)$ on both past events and stimulus by concatenating the history embedding and semantic vectors into a context vector $\mathbf{c}_{i,n} = [\mathbf{h}_n \mid\mid \mathbf{z}_i]$.

Fixation Duration Generation: The context vector $\mathbf{c}_{i,n}$ is employed to learn the parameters of a Log-Gaussian Mixture Model. **Fixation Position Generation:** The conditional probability of the next mark (fixation position), $p_{\theta}(\mathbf{r}_{F_{n+1}} \mid \mathbf{h}_n, \mathbf{z}_i)$ is defined as a 2D Gaussian Mixture Model.

The loss function is a negative log-likelihood defined as: $\mathcal{L}(\boldsymbol{\theta}) = -\sum_{j}\sum_{i}\sum_{n}\left[\log p_{\theta}^*(\tau_n^i\mid \boldsymbol{c}_{j,n}) + \log p_{\theta}^*(\mathbf{r}_{F_n}^i\mid \boldsymbol{c}_{j,n})\right]$.

 $P(au_{n+1}|\mathcal{H}_t,I_j)$

4. Qualitative Examples

 $(au_{n-2},\mathbf{r}_{F_{n-2}}) \quad \cdots \quad (au_n,\mathbf{r}_{F_n})$

TPP-Gaze predicts scanpaths better aligned with those from human subjects.

5. Extension to Visual Search

Let \mathbf{F}_{target} be the embedding vector representing the search objective obtained through the RoBERTa language model.

The visual backbone for the visual search model is modified to output $M=256\,$ [1] O. Shchur et al., Intensity-Free Learning of Temfeature maps. Let $X = [x_0, \dots, x_M] \in \mathbb{R}^{M \times d}$ represent the matrix of flattened image features. The task-specific semantic representation for the j-th image, $\mathbf{z}_{j,target}$, is:

$$\mathbf{z}_{j,target} = \sum_{i=1}^{M} w_i \mathbf{x}_i, \quad w = \text{softplus}(\text{MLP}(\mathbf{F}_{target}))$$

6. Comparison with the State of the Art

TPP-Gaze (with either GRU or Transformer-based history encoding) outperforms all the other approaches on most of the adopted metrics.

	COCO-FreeView			MIT1003			OSIE			NUSEF		
	$\overline{MM\downarrow}$	SM ↓	SS ↓	$\overline{MM\downarrow}$	SM ↓	SS ↓	$\overline{MM\downarrow}$	SM ↓	SS ↓	$\overline{MM\downarrow}$	SM ↓	SS ↓
Itti-Koch [7]	0.51	-	-	0.95	_	-	1.66	-	-	0.45	_	_
CLE (Itti) [8]	0.54	-	-	0.39	_	-	0.28	-	-	0.20	-	-
CLE (DG) [8]	0.44	-	-	-	_	-	0.24	-	-	0.15	-	-
G-Eymol [6]	1.05	9.00	8.75	88.0	15.90	3.32	1.16	16.17	12.28	0.81	1.76.	1.99
IOR-ROI-LSTM [5]	0.38	1.54	0.56	0.31	0.69	5.08	0.69	0.75	0.20	0.36	0.11	0.06
DeepGazeIII [3]	<u>0.03</u>	-	-	_	-	-	0.11	-	_	0.07	_	-
Scanpath-VQA [4]	0.12	1.07	0.43	0.07	<u>0.06</u>	<u>0.05</u>	80.0	<u>0.03</u>	0.02	0.06	0.02	<u>0.02</u>
DeepGazeIII [3]	0.04	-	-	0.08	-	-	0.08	-	-	0.08	-	-
Scanpath-VQA [4]	0.23	$\underline{0.08}$	<u>0.03</u>	0.12	0.23	0.14	0.23	0.40	0.29	0.09	0.06	0.06
TPP-Gaze (GRU.)	0.03	$\underline{0.08}$	0.05	0.04	0.15	0.12	<u>0.05</u>	0.20	0.25	<u>0.04</u>	0.04	0.02
TPP-Gaze (Trans.)	0.03	0.10	0.06	<u>0.04</u>	0.22	0.14	0.06	0.25	0.29	0.04	0.04	0.02

MM, SM, and SS average values may deliver inconsistent results: models exhibiting less variability w.r.t. humans, can score better than the ground truth model.

Our proposal: Considering a good model as the one that minimises the discrepancy between the target and model-derived score distributions.

7. Statistics of the Generated Scanpaths

scanpaths resemble those from real observers.

Return fixations pattern better in alignment with real ones if compared to SOTA.

References

- poral Point Processes, in ICLR, 2020.
- [2] O. Shchur et al., Neural Temporal Point Processes: A Review, in IJCAI, 2021.
- [3] M. Kümmerer et al., DeepGaze III: Modeling freeviewing human scanpaths with deep learning, in J. of Vision, 2022.
- [4] X. Chen et al., Predicting Human Scanpaths in Visual Question Answering, in CVPR, 2021.
- [5] Z. Chen et al., Scanpath Prediction for Visual Attention using IOR-ROI LSTM, in IJCAI, 2018. [6] D. Zanca et al., Gravitational Laws of Focus of
- Attention, in TPAMI, 2019. [7] L. Itti et al., A model of saliency-based visual at-
- tention for rapid scene analysis, in TPAMI, 1998.
- [8] G. Boccignone et al., Modelling gaze shift as a constrained random walk, in Physica A, 2004.