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lacking in most recent reviews of the field. Hence, we offer insights into
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their limited cognitive resources to the most attractive regions.

6. Domain-Specific Applications
Two types of attention:
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directing their gaze towards a spe-
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Human gaze data assists Al models ral way to capture visual atten-

in detecting salient objects in videos, Segmented Object N—> tion during the diagnosis process.
segmenting videos without supervi- - Raw Eye movements from an expert are

sion, and recognizing activities in Fixations - Attention oreumoi. | recorded and raw fixations are con-
egocentric video sequences. w Loss verted into a visual attention map to
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Saliency Reduction

Human saliency is adopted as guid- | Y
ance to manipulate and enhance im-
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7. Current Challenges and Future Research Directions
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Image + Mask $ oz~ Nl oc- duce visual distraction while increas- . Data Scarcity: Collecting human gaze data is expensive.
- - ing the attractiveness of the desired _ |
Saliency Guidance 1 bi 1 %’ Wearable Devices: The use of wearable devices such as smart glasses
Batore | After objects within the scene. .
and augmented reality headsets would allow large amounts of data to be
— collected efficiently and in an ecological setting.
utputs
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for the perceived relative importance input Image Saliency Im:)/lsrl:::lce %’ Synthetic Data: In the NLP community, the integration of synthetic
of design elements. scanpath generation with a scanpath-augmented language model has
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ever, minimal exploration has been undertaken in computer vision.
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