
Trends,Applications,andChallenges
inHumanAttentionModelling

G. Cartella1, M. Cornia1, V. Cuculo1,
A. D’Amelio2, D. Zanca3, G. Boccignone2, R. Cucchiara1

1University of Modena and Reggio Emilia, 2University of Milan,
3Friedrich-Alexander-Universitat Erlangen-Nurnberg

1. Motivation of the Survey
Integration of Human Attention in AI Models. The perspective of the
interplay between deep learning-based applications and visual attention is
lacking in most recent reviews of the field. Hence, we offer insights into
the integration of human attention into deep-learning models to tackle
challenges related to images/videos, text, or multimodal data.

New Research Directions. Our survey identifies the key challenges in-
spiring future research directions to solve data scarcity and privacy issues.

2. Introduction: Human Attention Modelling
Visual attention enables humans to rapidly analyze complex scenes and devote
their limited cognitive resources to the most attractive regions.

Two types of attention:

� Bottom-up: Prioritization is guided by the low-level processing of the
visual stimulus.

� Top-down: It refers to the voluntary allocation of attention to certain
features, objects or regions and is usually task-guided (e.g. visual search).

Human Attention has been exploited within different modalities including
Image, Video, Audio and Text. It can be represented in different forms:
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3. Image and Video Processing

Human gaze data assists AI models
in detecting salient objects in videos,
segmenting videos without supervi-
sion, and recognizing activities in
egocentric video sequences.
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Human saliency is adopted as guid-
ance to manipulate and enhance im-
ages. The aim is to automatically re-
duce visual distraction while increas-
ing the attractiveness of the desired
objects within the scene.

Visual attention allocation in graphic
designs can be interpreted as a proxy
for the perceived relative importance
of design elements.
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4. Language Modelling
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Machine Reading Comprehension:
Eye movement patterns are used to in-
fer the reader’s native language.

Natural Language Understanding:
Models generate scanpaths from ex-
isting eye-tracking corpora, improving
performance on tasks such as senti-
ment analysis and sarcasm detection.

5. Vision-and-Language Applications
Automatic Captioning
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Output Caption: 
A car is parked in the street 

next to a parking meter.
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Raw fixations or saliency maps can be
combined with the language model to
guide the caption generation.

Human gaze guides VQA models to
generate human-like attention maps
and promoting reasoning behaviour.

6. Domain-Specific Applications
Robotics
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Inputs In collaborative robotics, robot assis-
tance can be enabled by individuals
directing their gaze towards a spe-
cific target they wish to grasp or ma-
nipulate. Control systems able to
accommodate eye-gaze input modal-
ities have been developed.

Inverse reinforcement learning can
be adopted to learn an attention pol-
icy treating each fixation point as a
potential source of reward. Some
works modelled the human periph-
eral vision and introduced a gaze
detection model augmented by the
scene semantics.
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Human gaze emerges as a natu-
ral way to capture visual atten-
tion during the diagnosis process.
Eye movements from an expert are
recorded and raw fixations are con-
verted into a visual attention map to
guide model attention towards the
most discriminative regions.

7. Current Challenges and Future Research Directions
Data Scarcity: Collecting human gaze data is expensive.

Wearable Devices: The use of wearable devices such as smart glasses
and augmented reality headsets would allow large amounts of data to be
collected efficiently and in an ecological setting.

Privacy Issues: Data acquisition through wearable devices raises a new
challenge concerning ethical and privacy-aware collection and sharing.

Synthetic Data: In the NLP community, the integration of synthetic
scanpath generation with a scanpath-augmented language model has
shown promising results, eliminating the need for human gaze data. How-
ever, minimal exploration has been undertaken in computer vision.
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