

Unravelling Neurodivergent Gaze Behaviour through Visual Attention Causal Graphs

Giuseppe Cartella¹, Vittorio Cuculo¹, Alessandro D'Amelio², Rita Cucchiara¹, Giuseppe Boccignone²

¹{name.surname}@unimore.it, ²{name.surname}@unimi.it

1. Introduction

Humans possess sophisticated mechanisms that enable reasoning about cause and effect [1]. Research has demonstrated how these mechanisms, particularly counterfactual reasoning, can be revealed by an **observer's** gaze behaviour [2].

This perspective may have implications for developmental and clinical research on individuals with **Autism Spectrum Disorder (ASD)**.

Research Question

Verify whether the causal structure governing the dynamics of attention allocation has the potential to differentiate subjects with Autism Spectrum Disorder (ASD) from typically developing (TD) controls.

2. Overview of the Proposed Method

Modelling gaze as a phenomenon governed by causal relationships potentially allows for a deeper understanding of how attention is orchestrated moment-to-moment, and how this differs between groups of individuals.

The proposed approach is divided into three phases:

- Construction of Aggregated Item-Level Attention Allocation Traces.
- Estimation of the Visual Attention Causal Graph (VA-CG).
- ASD vs. TD Classification via the Obtained VA-CG Representations.

3. Aggregated Item-Level Attention Allocation Traces

Consider a stimulus j (image), observed by a group of S subjects with their eye movements tracked in real-time.

A segmentation approach is adopted to define semantically relevant items within an image, where each item corresponds to a distinct region or object.

For each time instant, we quantify the visual attention allocated to each item by counting the number of fixations directed towards it.

This procedure generates a **multivariate time series**, where each time series corresponds to an individual item, describing the aggregated attention allocation across multiple subjects over time.

The resulting data captures the **group-level temporal dynamics of visual attention at the item level**, providing insight into how attention is distributed across different regions of the image as it is processed.

4. Estimation of the Visual Attention Causal Graphs (VA-CG)

To estimate the causal graph from the obtained aggregated attention allocation traces, we employ the **PCMCI causal discovery method** [3].

Each time series $x_i(t)$ corresponds to the amount of attention allocated to a given item i at time t. PCMCI employs Conditional Independence (CI) testing to detect causal dependencies. Causal links between traces $x_i(t)$ and $x_j(t)$ are determined by evaluating their conditional independence (\perp) with respect to a set of potentially mediating variables $\mathbf{z}(t)$:

$$x_i(t) \perp x_j(t) \mid \mathbf{z}(t)$$

where $\mathbf{z}(t)$ encompasses other variables that may influence the interaction between $x_i(t)$ and $x_j(t)$.

PCMCI constructs a causal graph, named **Visual Attention Causal Graphs (VA-CG)**, that reflects the structure of attention flow across the items in a scene.

6. ASD Detection via VA-CGs

For each image j, eye-tracking data from ASD and TD groups are aggregated into Item-Level Attention Allocation Traces.

Such traces are used to construct **group-specific** Visual Attention Causal Graphs (VA-CGs), G_j^{ASD} and G_j^{TD} . To classify a new subject s, their scanpath is converted into a causal graph G_j^s , and the subject is assigned to the group whose VA-CG is closest to G_j^s according to the Jaccard distance between edge sets.

Edges are defined using a threshold β on causal strength and significance tests. The classification rule is:

$$\operatorname{group}_{j}^{*} = \arg \min_{g \in \{ASD, TD\}} d(G_{j}^{g}, G_{j}^{s}).$$

${f Methods}$	Accuracy	Precision	\mathbf{Recall}	\mathbf{AUC}
Chen et al. (Independent) [4]	0.89	0.86	0.93	0.92
Chen et al. (Full) [4]	0.93	0.93	0.93	0.98
AttentionGraph+ S_{scan} [5]	0.93	_	_	_
AttentionGraph+ S'_{scan} [5]	0.86	_	_	_
Our	0.93	0.93	0.93	0.93

Unlike the other baselines, our proposed solution offers a **high de- gree of interpretability**.

- [1] J. Pearl Causality, Cambridge university press 2009.
- [2] T. Gerstenberg et al. Eye-tracking causality, Psychological science 2017.
- 3] J. Runge et al. Detecting and quantifying causal associations in large nonlinear time series datasets, Science advances 2019.
- [4] S. Chen et al. Attention-based autism spectrum disorder screening with privileged modality, ICCV 2019.
- [5] K.F. Yang et al. Visual attention graph, arXiv 2025.